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Chapter 8 
Bearing Capacity of Floating Ice Sheets 
 
 
8-1.  Introduction 
 
In cold regions, ice covers on rivers, lakes, and seas are often used as temporary roads, bridges, 
airfields, and construction platforms. For these uses, it is important that there be a sufficient mar-
gin of safety between the breakthrough loads and the actual loads placed on a floating ice sheet. 
This chapter discusses the bearing capacity of floating ice sheets of any given thickness, or how 
to determine the required ice thickness for a given load. 
 

a.  The thickness of an ice sheet can be either measured by drilling holes in it or estimated for 
a location from atmospheric temperature data and the theoretical formulas presented in Chapter 2 
of this manual.  

 
b.  At times, the actual ice thickness at a location is less than the required minimum ice thick-

ness for a given load. A common practice to increase ice thickness is to plow the snow off the 
path chosen for a road. Removing the snow allows the ice sheet to grow faster, and thus in-
creases the bearing capacity at those locations. However, the plowed snow banks become loads 
on the ice sheet, and they provide extra insulation to the ice at those locations, which retards ice 
thickness growth. Both effects can decrease safety. 

 
c.  Another common practice to increase ice thickness is by flooding and freezing in a pre-

scribed series of steps. The literature gives examples of thickening a natural ice cover by flood-
ing and freezing in thin layers, after which the ice has held loads as heavy as 5 meganewtons 
(MN) (500 tons) for 30 days and longer. However, such operations need careful planning and 
execution. 

 
8-2.  Bearing Capacity of Ice Blocks 
 
The main source of bearing capacity for a floating ice sheet is its buoyancy, or the hydrostatic 
pressure on its bottom, because the density of ice is less than the density of liquid water. For a 
centrally placed or a uniformly distributed load P on an area A of an ice block (Figure 8-1), the 
equilibrium equation of the forces in the vertical direction is given by 
 
 P + Ahγi= Azγw for z < h (8-1) 

 
where  

γi  =  specific weight of ice  
γw  =  specific weight of water 
h  =  ice thickness 
z  =  depth of submergence.  
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Figure 8-1. Equilibrium of forces on an ice block. 
 

When P = 0, we get the depth of submergence zo under no load, and it is given by: 
 

zo = (γi/γw)h.  
 
The difference h – zo is known as the freeboard, which is associated with the bearing capacity of 
an ice block. When z = h, we get the maximum load Pmax that can be placed on the ice block 
without submergence, and it is given by: 
 

Pmax = Ah(γw – γi). (8-2) 
 

a.  When the resultant of the load is not centrally placed on the ice block, the ice block will 
tilt. This will result in a linearly varying pressure p at the bottom surface of the block. The bear-
ing capacity for this case may be determined as done previously, except that now, in addition to 
vertical equilibrium, the moment equilibrium has to be considered. Note that when the eccentric-
ity of the load resultant exceeds a certain limit, namely when the loading moment is larger than 
the restoring moment, the ice block will tip over. When the load is dynamic, the analysis is more 
involved. Then, the equations of motion for the ice block have to be coupled with the dynamic 
equations for the fluid base. 

 
b.  To illustrate the use of the above equations, let us determine the bearing capacity of an ice 

block having a thickness of 1 meter (3.28 feet) and an area of 10 meters2 (107.6 feet2). The spe-
cific weights of water and ice are given by 

 
γw = ρwg  

 
γi = ρig  

 
where  

ρw  =  density of water  
ρi  =  density of ice 
g  =  gravitational acceleration. 
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Assuming ρw = 1000 kg/m3, ρi = 918 kg/m3 and g = 9.81 m/s2 (or, ρwg = 62.4 lbf/ft3 and ρig = 
57.3 lbf/ft3), we get the bearing capacity of the ice block Pmax = 8.04 kN (1808 lbf) from Equa-
tion 8-2. 

 
c.  Another example to illustrate the use of Equation 8-2 is to find the area of a 0.6-meter-

thick (2-feet-thick) ice block needed to safely carry a load of 13.34 kN (3000 lbf). Using the 
same values for specific weights, we get  

 
A = 13340/{0.6 × (1000 – 918) × 9.81} = 27.65 m2 (297 ft2) 

 
which is a square area of about 5.26 meters (17.25 feet) per side. 

 
8-3.  Bearing Capacity of Floating Ice Sheets 
 
When a large floating ice sheet is loaded vertically over an area, the deformation of the ice in the 
vicinity of the applied load causes slightly higher water pressure p(x,y) under the ice sheet than 
the pressure po (=ρigh) at farther distances (Figure 8-2). With Archimedes’ principle, it can be 
shown that, for large ice sheets, the applied load is equal to the weight of displaced water caused 
by the deformation of the floating ice sheet. For quasi-static loading, this condition of equilib-
rium is satisfied at all times. Thus, the buoyancy force supports the load, and the ice sheet merely 
deforms to distribute the load over a large area. The deformation of the ice sheet generates 
stresses that can lead to its failure, and thus destroy the ability of the ice sheet to distribute the 
load. 
 

 
 

Figure 8-2. Hydrostatic pressure from a load on an floating ice sheet. 
 

a.  Because floating ice sheets exist at temperatures close to ice’s melting point, it is a com-
mon experience that ice responds to applied loads by elastic and creep deformations simultane-
ously. During uniaxial tests at low strain rates (below 10–4 s–1 in compression and 10–5 s–1 in ten-
sion), ice deforms mostly by creep, and creep strains are generally larger than elastic strains. At 
high strain rates during uniaxial tests, most of the deformation in ice is elastic (because it takes 
time to develop creep deformation), and the failure of ice specimens is by fracture. The interplay 
between creep and elastic deformations, coupled with the low fracture energy required to propa-
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gate a crack, causes ice to fail in both the ductile and brittle manners with a strong dependence 
on strain rate, making predictions of the bearing capacity of floating ice covers very complex. 

 
b.  Because of the creep and elastic deformations and the inertial effects of underlying water, 

the loading on a floating ice sheet can be categorized as one of the following three types: 
 

(1)  Short-term loads, such as those imposed by slowly moving vehicles or by the place-
ment of a load by a crane for a short time. 

 
(2)  Moving loads that are fast enough to excite the ice–water system to deflect much more 

than would be the case for a static load. 
 
(3)  Long-term loads, such as those imposed by parked vehicles, stored material, or drilling 

rigs. 
 
In the following paragraphs, each of the three types of loading is separately discussed because of 
significant differences in the response of the ice sheet to these loads. 
 
8-4.  Analytical Methods for Short-Term Loads 
 
Under this type of loading, ice behaves as an elastic, brittle material, and the ice–water inertial 
forces are negligible. The floating sheet can be thought of as an elastic plate resting on an elastic 
foundation, and its deflection is governed by the differential equation 
 

D∇4w + γww = q (8-3) 
 

where  
D  =  Eh3/[12(1 – ν2)] (flexural rigidity of the plate) 
E  =  effective elastic modulus of ice 
h  =  ice thickness 
ν  =  Poisson’s ratio for ice 

 ∇4  =  biharmonic operator [e.g., (∂4/∂x4) + 2(∂4/∂x2∂y2) + (∂4/∂y4) in Cartesian coordi-
nates] 

w  =  vertical deflection of a point on the ice sheet 
γw  =  specific weight of water 
q  =  load per unit area on the ice sheet. 

 
Equation 8-3 leads to the definition of characteristic length: 
 

L=(D/γw)1/4. (8-4) 
 

Figure 8-3 shows plots of L versus h for various values of the effective elastic modulus E, for a 
value of Poisson’s ratio ν = 0.3. 
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Figure 8-3. Plots of L versus h for various values of E. 
 

a.  A solution for Equation 8-3, which satisfies a given set of boundary conditions, can be ob-
tained for a particular loading q, and the stresses can be obtained from the solution. The maxi-
mum tensile stress smax at the bottom of an infinite plate on elastic foundations is given by: 

 
smax = CP/h2 (8-5) 

 
where  
 P  =  total, downward acting load uniformly distributed over a circular area of radius a 
 h  =  plate (ice) thickness 
 C  =  0.275(1 + n) log10 {(Eh3)/(γwb4)}  
 b  =  (1.6a2 + h2)1/2 – 0.675h, when a < 1.724h, or b = a, when a > 1.724h.  

 
The coefficient C is obtained from the theory of thick plates, and it does not go to infinity for 
concentrated loads as in the case of results from the theory of thin plates. Figure 8-4 shows plots 
of C versus a/L for n = 0.3 and various ratios of h/L. As shown in Figure 8-4, the maximum 
stress smax decreases with increasing radius a for the same load and ice thickness. 

 
b.  If a load P is applied uniformly over a square area, a by a, at the edge of a semi-infinite 

floating ice sheet, the maximum tensile stress can be obtained by Equation 8-5, but the constant 
C in Figure 8-4 is much higher than that for infinite ice sheets. If there are any wet cracks in the 
ice sheet, it should be treated as semi-infinite. If a load moves onto the edge of a floating ice 
sheet, care must be exercised to make sure that it is not large enough to create a crack at and per-
pendicular to the edge. The plot in Figure 8-4 also shows a decrease in the maximum stress at the 
edge if the load is distributed over a larger area. 
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Figure 8-4. Plots of C versus a/L for various values of h/L. 
 

c.  To superpose the stresses from many loads on an infinite floating ice sheet, use the fol-
lowing procedure. The stress s caused by a load applied at a distance x from the point of loading 
is given by: 

 

σ = σmax 





−

L
x

691.0
exp  (8-6) 

 
The total stress at a point attributable to loads P0, P1, P2, ..., Pn located at distances x0(= 0), x1, 
x2,..., xn is obtained at the point x0 by adding the stress contributions from all loads: 
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d.  A safe, proven value of the maximum stress of 550 kPa (80 psi) has worked for the designs 

of floating platforms of sea ice, but a value of 690 kPa (100 psi) can be assumed for freshwater 
ice. Field experience with drilling platforms suggests the following values of the effective elastic 
modulus: 690 MPa for calculations of deflections and stresses immediately after placement of a 
load and 55 MPa for calculations of deflections at a long time after placement of a load (these 
values of effective elastic moduli are close to those measured by 3-meter-long [10 foot-long] 
strain gages used at five levels in a 7-meter-thick [22-foot-thick] ice platform). The maximum 
tensile stress, which depends on the distributions and distances of the loads from each other, is 
the immediate elastic response to a load placement, and it decreases with the passage of time be-
cause of the creep deformation of ice.  

 
e.  To illustrate the above procedure, let us determine the load-carrying capacity of a 30.5-

centimeter-thick (12-inch-thick) freshwater ice sheet, assuming that the flexural strength and ef-
fective elastic modulus of ice are, respectively, 690 kPa (100 psi) and 690 MPa (105 psi) and that 
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the load is distributed over a circular area of radius 100 centimeters (40 inches). From Figure 8-
4, we get a value of L = 3.7 meters (12 feet) for h = 0.305 meters (12 inches) and E = 690 MPa 
(105 psi). For values of a/L = 0.1/3.7 = 0.27 and h/L = 0.305/3.7 = 0.083, we get a value of C = 
1.19. Substituting values of C = 1.19, smax = 690 kPa (100 psi) and h = 0.305 meters (12 inches) 
in Equation 8-5, we get an estimate of the safe load P = 54.11 kN (12160 lbf). 

 
f.  To see the effect of load distribution on the bearing capacity, let us now determine the load-

carrying capacity of the same ice sheet as in the above example, except that the load is distrib-
uted over a circular area of radius 10 centimeters (4 inches) instead of 100 centimeters (40 
inches). The value of L = 3.7 meters (12 feet), as given above. For values of a/L = 0.1/3.7 = 
0.027 and h/L = 0.305/3.7 = 0.083, we get a value of C = 2.5. From Equation 8-5, we get an es-
timate of the safe load P = (690 kN m–2)(0.305 m)2/2.5 = 25.67 kN (5772 lbf), which is less than 
half the value of safe load obtained above. 

 
g.  To estimate a load P that is uniformly distributed over a square area (20 × 20 centimeters 

[8 × 8 inches]) at the edge of a semi-infinite ice sheet, we get a value of C equal to 5.5 for the 
value of a/L = (0.2/3.7) = 0.054. The safe load P placed at the edge of a semi-infinite ice sheet is 
only 11.67 kN (2624 lbf) for smax = 690 kPa (100 psi).  

 
h.  The analytical methods for short-term loads presented in this paragraph compute the 

maximum tensile stress immediately after placement of a load on a floating ice sheet, and the use 
of these procedures can only lead to prediction of the loads to cause the first crack in the sheet. If 
the elastic stress exceeds the tensile strength, radial cracks form around the load. If the load on 
an ice sheet continues to increase, several circumferential cracks form before breakthrough takes 
place. For safe placement of loads during any operation on floating ice sheets (i.e., to prevent 
radial cracks from forming under the load), plans should include estimating the maximum tensile 
stresses, which should not exceed the tensile strength of the ice. This is a conservative approach 
to estimating the bearing capacity of floating ice sheets, because the breakthrough loads are gen-
erally higher than the load necessary to cause the first crack in the ice sheet. 

 
8-5.  Empirical Methods for Short-Term Loads 
 
Data compiled on the failure loads and thicknesses of ice covers during logging and other opera-
tions indicate that breakthrough loads depend on the square of the ice thickness. By having an 
adequate factor of safety, a safe short-term load on a floating ice sheet can be obtained from the 
breakthrough loads. A load obtained by this procedure may produce radial cracks in the ice 
sheets, but the wedging action of a radially cracked ice sheet supports the load for a short dura-
tion of time. 

 
a.  A simple empirical formula for the loads created by single vehicles is 

 
P = Ah2 (8-8) 

 
where 
 
 P  =  allowable load 
 h  =  effective ice cover thickness 
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 A  =  coefficient that depends on the quality of the ice, the ice temperature, the geome-
try of the load, the kind of units used, and the factor of safety. 

 
b.  To ensure safe movement of single vehicles crossing lake or river ice at temperatures be-

low 0°C (32°F), the straightforward and practical formulas P = h2/16 or Ph 4=  have been 
used for decades. These formulas are for English units in which P is in tons (2000 lbf) and h is in 
inches. Although not strictly equivalent, similar practical formulas for SI units are P = h2/100 or 

Ph 10= , where P is in metric tons (1000 kgf, or 2205 lbf) and h is in centimeters, and P = h2 
or Ph = , where P is in meganewtons (MN) and h is in meters. All these formulas are for black 
ice below 0°C (32°F), and appropriate adjustments to thicknesses to account for snow ice should 
be computed as given below. The following are illustrative examples of Equation 8-8. 
 

c.  Determine the allowable load of an ice cover with the smallest ice thickness h = 25.4 cen-
timeters (10 inches). 
 

25.6
16
10

16

22

=== hP  tons. 

 
In metric units, this is 
 

45.6
100

4.25 2

==P  metric tons. 

 
d.  Determine the smallest ice thickness needed to safely carry one person of weight P = 200 

lbf = 0.1 ton (90.7 kgf = 0.0907 metric ton). 
 

26.11.04 ==h  inches 
 
Expressed in metric units, the required thickness is 
 

== 0907.010h 3 centimeters. 
 

e.  Based on Equation 8-8, Table 8-1 lists the safe minimum values of ice thickness for 
tracked and wheeled vehicles on clear, sound ice. The last column of Table 8-1 lists the safe dis-
tance that should be maintained between vehicles to avoid superposition of stresses from two 
loads. These distances are about 100 times the required minimum ice thickness. For an ice thick-
ness greater than the minimum required thickness, the spacing between the loads can be reduced. 
When driving a vehicle on an ice sheet, checking the ice thickness at regular intervals along the 
intended path is recommended. This should be done every 45 meters (150 feet), or more fre-
quently, if the ice thickness is quite variable. There are several additional points to consider. 

(1)  If white, bubble-filled ice makes up part of the ice thickness, this part should be con-
sidered equivalent to half as much clear ice. For example, if a 76.2-centimeter-thick (30-inch-
thick) ice sheet is composed of 25.4 centimeters (10 inches) of white ice and 50.8 centimeters 
(20 inches) of clear ice, the white ice should only be considered as 12.7 centimeters (5 inches) 
thick, giving an equivalent thickness of clear ice to be 50.8 + 25.4/2 = 63.5 centimeters (20 + 
10/2 = 25 inches) for the computation of the safe load on that ice sheet. 
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(2)  If there has been a large snowstorm, the snow represents a new load on the ice. If the 

new snow is sufficiently heavy, it will depress the whole ice sheet to a level where the top sur-
face of the ice sheet is below the water level. Water then usually seeps through the cracks in the 
ice sheet and saturates the lower layers of the snow cover. Stay off the ice sheet until this slush 
freezes completely. When that happens, the frozen slush becomes an added thickness of white 
ice. 

 
(3)  Contrary to what many think, a rapid and large drop in air temperature causes an ice 

sheet to become brittle, and it may not be safe to use the ice sheet for 24 hours. 
 
(4)  If the air temperature stays above freezing for 24 hours or more, the ice begins to lose 

its strength, and the values given in Table 8-1 do not represent safe values. This becomes the 
general condition during springtime. No quantitative guidance can be offered for this situation. 
When this happens, any ice cover is unsafe for any load. 

 
 
Table 8-1 
Approximate Ice Load-Carrying Capacity (Note: Read the text before using this table) 

Necessary thickness* at average ambient 
temperatures for three days 

cm  (in.) 

 
Type of 
Vehicle 

 
Total Weight 

Metric tons (tons) 
0 to –7°C 

(32 to 20°F) 
–9°C and lower 

(15°F and lower) 

Distance 
between vehicles 

m (ft) 

Tracked 6 (6.6) 25.4 (10) 22.9 (9) 15.2 (50) 
 10 (11.0) 30.5 (12) 27.9 (11) 19.8 (65) 
 16 (17.6) 40.6 (16) 35.6 (14) 24.4 (80) 
 20 (22.0) 45.7 (18) 40.6 (16) 24.4 (80) 
 25 (27.6) 50.8 (20) 45.7 (18) 30.5 (100) 
 30 (33.1) 55.9 (22) 48.3 (19) 35.1 (115) 
 40 (44.1) 63.5 (25) 55.9 (22) 39.6 (130) 
 50 (55.1) 68.6 (27) 63.5 (25) 39.6 (130) 
 60 (66.1) 76.2 (30) 71.1 (28) 45.7 (150) 

Wheeled 2 (2.2) 17.8 (7) 17.8 (7) 15.2 (50) 
 4 (4.4) 22.9 (9) 20.3 (8) 15.2 (50) 
 6 (6.6) 30.5 (12) 27.9 (11) 19.8 (65) 
 8 (8.8) 33.0 (13) 30.5 (12) 32.0 (105) 
 10 (11.0) 38.1 (15) 35.6 (14) 35.1 (115) 

* Freshwater ice. 
When the temperature has been 0°C (32°F) or higher for a few days, the ice is probably unsafe for any 
load. 
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8-6.  Moving Loads 

 
a.  When a load moves on an ice sheet fast enough (more than 15 km/hr or 10 mph), the iner-

tia forces generated by the movement of the ice sheet and the underlying water modify the de-
flections and stresses obtained from Equation 8-3 for the short-term load. For a slow-moving 
load, the deflection bowl in the ice sheet moves with it, and the underlying water must continu-
ally be moved aside by the bowl in a way similar to a shallow-draft boat. As for a boat, move-
ment of the deflection bowl generates waves in the ice–water system. If the celerity of these 
waves is the same as the vehicle speed, the deflection and the stresses in the ice sheet are ampli-
fied, similar to resonance in an oscillating system. The critical speed at which such amplifica-
tions take place depends on the water depth H and the characteristic length L of the floating ice 
sheet. For deep water (H>L), the critical speed uc = 1.25 (gL)1/2, where g is the gravitational ac-
celeration. For shallow water (H<L), the critical speed uc = (gH)1/2. The critical speed uc depends 
on the characteristic length L, which depends on the ice thickness. However, it is independent of 
the ice thickness in shallow water, in which water depth H is less than the characteristic length L. 
Because of the amplification of deflections and stresses in the ice sheet, vehicles should not ap-
proach the critical speeds. 
 

b.  As an example, let us consider 0.305-meter-thick (1-foot-thick) ice sheet, and its effective 
elastic modulus is 690 MPa (105 psi). From Figure 8-3, we get the value of characteristic length 
L equal to 3.7 meters (12 feet). For deep water, the critical speed of the ice–water system uc = 
1.25(gL)1/2 = 7.5 m/s (27 km/h or 16.8 mph). For water depth equal to 2 meters (shallow water), 
the critical speed uc = (gH)1/2 = 5.5 m/s (20 km/h or 12.4 mph). 

 
8-7.  Long-Term Loads 
 
When a load is placed for a long time on a floating ice sheet, there is an immediate elastic de-
formation of the ice, followed by permanent creep deformation. The long-term effect of creep 
deformation is that the vertical deflection of the loaded area increases with time, and the deflec-
tion rate is a nonlinear function of the applied load. If the load is not large, the displacement rate 
is small, leading to safe placement of the load for a long time. However, a high deflection rate 
for a large load may lead to the failure of ice sheets after a certain time. There is a need to deter-
mine the duration of time that a particular load can safely be placed on an ice sheet. 
 

a.  For time-dependent deflections less than the freeboard, elastic equations (e.g., Equation 8-
3) describe the deflections of the ice sheet in the vicinity of a load, but the characteristic length, 
which depends on the elastic modulus E, decreases continuously with time. The maximum elas-
tic deflection δ under a load P is given by: 

 
δ = P/(8ρwgL2). (8-9) 

 
b.  For example, let us again consider a 30.5-centimeter-thick (12-inch-thick) ice sheet with a 

load P equal to 25.67 kN (5772 lbf). The short-term deflection at the load is estimated by as-
suming the effective elastic modulus to be 690 MPa (105 psi), and we get L= 3.67 meters (12 
feet), and δ = (25,670)/(8 × 9806.6 × 3.672) = 0.024 meters (6.95 inches), which is almost equal 
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to 0.08h, the freeboard of the ice sheet. If this load were to be left on that ice sheet for any length 
of time, the permanent deflection after the elastic deflection takes place would cause the top sur-
face to be below the water surface, creating the possibility of water seeping through cracks and 
flooding the loaded area. To estimate the long-term deflection, we assume the effective elastic 
modulus E = 55 MPa, and we get L = 1.95 meters. Limiting the maximum deflection δ to the 
freeboard, which is assumed to be 0.08 times the ice thickness, we get an estimate of the long-
term load for the ice sheet Plong-term = 8ρwgL2(0.08h). = (8)(1000 kg/m3)(9.81 m/s2)(3.7 
m)2(0.08×0.305 m) = 7.3 kN (1640 lbf). These estimates of the loads indicate that the long-term 
load is about three to four times smaller than the short-term load on an ice sheet. 

 
c.  According to available field observations, limiting the maximum deflection of a statically 

loaded ice cover to the freeboard results in a safe condition. In a field situation, one needs to 
continuously monitor the remaining freeboard of an ice sheet for long-term storage of a load. A 
recommended field practice is to drill a hole in the ice sheet near the load and check the free-
board, which is the distance between the water level in the hole and the top surface of the ice 
sheet. If the water begins to flood the top surface of the ice sheet, it is necessary to move the load 
immediately to prevent breakthrough attributable to long-term creep deformation of the ice. An-
other method for predicting the onset of failure is based on the energy method, which requires 
measurement of the deflection of the ice sheet at the load and keeping a record of the load placed 
on it. The results of such monitoring effort also give estimates of the safe storage time. 
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